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Abstract Simulations are used to compare four statis- 
tics for the detection of a quantitative trait locus (QTL) 
in daughter and grand-daughter designs as defined by 
Soller and Genizi (1978) and Weller et al. (1990): (1) the 
Fisher test of a linear model including a marker effect 
within sire or grand-sire effect; (2) the likelihood ratio 
test of a segregation analysis without the information 
given by the marker; (3) the likelihood ratio test of a 
segregation analysis considering the information from 
the marker; and (4) the lod score which is the likelihood 
ratio test of absence of linkage between the marker and 
the QTL. In all cases the two segregation analyses are 
more powerful for QTL detection than are either the 
linear method or the lod score. The differences in power 
are generally limited but may be significant (in a ratio of 
1 to 3 or 4) when the QTL has a small effect (0.2 standard 
deviations) and is not closely linked to the marker 
(recombination rate of 20% or more). 

Key words QTL . Genetic marker �9 Likelihood 
ratio test �9 Segregation analysis 

Introduction 

The DNA polymorphisms discovered in the seventies 
enable systematic production of genetic makers (Soller 
1990). Large-scale gene-mapping projects have been 
started recently for domestic animals, and in particular 
for pigs and cattle. The identification of quantitative 
trait loci (QTLs) is most often advanced as the main 
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practical interest for these future maps. When a QTL is 
linked to a marker gene, the quantitative trait distribu- 
tion in offspring from a double heterozygous parent will 
differ depending on the marker allele they received from 
this parent. This is the basic principle used in all QTL- 
detection designs in plant as well as in animal breeding. 

Depending on the biological characteristics of the 
species and on available experimental facilities, these 
designs are more or less controlled. In cattle a suggestion 
has been made to use existing, large half-sib families 
produced by artificial insemination, an idea which was 
formulated as early as 1961 by Neimann-Sorensen and 
Robertson. 

More recently, Soller and Genizi (1978) and Weller 
et al. (1990) evaluated the power of "daughter" and 
"grand-daughter" designs. The test statistic proposed 
was the ratio of variances between and within marker 
class within family. This type of criterion exploits only 
mean differences between classes of offspring from 
double heteroygous sires. The maximum likelihood 
technique is an appealing alternative to this linear ap- 
proach. It has been described and evaluated in simple 
genetic situations such as a backcross or an F 2 between 
pure lines by Weller (1986), Luo and Kearsey (1989, 
1991), Simpson (1989, 1992), Lander and Botstein (1989) 
and Haley (1991). 

In the case of outbred populations, the segregation- 
analysis models designed by MacLean et al. (1984) or by 
Risch (1984) for nuclear human families must be adapted 
to a livestock structure. Thus, Knott and Haley (1992) 
applied maximum likelihood for mapping of QTLs in 
full-sib families. A first evaluation of these likelihood 
techniques was published by Le Roy and Elsen (1991) 
for half-sib families. These were found to be very com- 
puter intensive and thus efficient approximations would 
be welcome (Dentine and Cowan 1990). 

In the present paper, we give new comparisons be- 
tween linear and maximum-likelihood (ML) techniques 
when applied to daughter and grand-daughter designs. 
The relative interest of ML is briefly described in alge- 
braic terms, and simulation results are given in simple 
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cases using models without approximations. In particu- 
lar, the simulations were limited to the test ofmonogenic 
inheritance vs no heredity; no polygenic effect was ad- 
ded to the generated data, nor was it included in the 
likelihood function. Nevertheless, the general expres- 
sion of the test statistics is given in order to show its 
complexity. 

Models and test statistics 

We consider the case of a single biallelic QTL and a single marker. 
The s sires in the daughter design, as well as the t grand-sires in the 

grand-daughter design, were all assumed to be heterozygous MN at 
the marker locus, while their genotype at the quantitative locus might 
have been AA, AB or BB. In the population of these males, the four 
possible genotypes (MA/NA, MA/NB, MB/NA and MB/NB) were at 
frequencies p~, P2, P3 and P4 respectively, with ~ p i  = 1. In the 
population of dams, the frequency of the A allele was q. Within a QTL 
genotype g, the trait was assumed to be normally distributed with a 
mean/~. 

Sire design 

Amongst the three types of sire families studied by Soller and Genizi 
(1978), we considered only the half-sib one. Each sire i (i = 1 . . . . .  s) was 
given a family of daughters j (j = 1,... ,  d),' all measured at the marker 
locus. ~g~, ~V~ and qQ were the subsets of sire i daughters depending on 
the marker alleles received from i (M, N or unknown). 

Linear statistics of Soller and Genizi (1978). Soller and Genizi (1978) 
considered only informative daughters, i.e., belonging to ~//i or ~g~ 
subsets. Their model may be written as: 

f 1 u i + 7rni + e u if J~'///{i 
Yij = 1 

ui--~mi-}-eij if j ~V ' i  

where y~j is the performance of the jth daughter of the sire i, ui is the 
sire i effect and m~ the within-sire marker effect, i.e., the effect of the 
marker received by a daughter from its sire. The residuals, e~j, are 
assumed to be normally distributed, Jf'(0, ae2). 

With this model, a QTL linked to the marker locus is detected 
through the significance of the m~ effect. The corresponding test 
statistics was written as SG. 

Maximum likelihood. Let Gi be the additive polygenic value of the ith 
sire, that is twice the sire effect u~. G~ was assumed to be normally 
distributed, ~ ( 0 , ~ ) .  We then considered the following density 
functions: 

the density ofyq given the daughter genotype g [g E(AA, AB, BB)] and 
the polygenic sire value G; 

1 ~ l [ y i j - ~ _ - G i / 2 ) 2 1 ,  
fo(yi;lGi)= = e x p ( - - [  

x/27ra, L 2 ~, G e / J 

the density of the polygenic sire value Gi: 

1 [- 1 ['G~'~27 

[ 2k o) J = - - e x p  - - -  - -  , 

the density of Yij given the QTL allele (A or B) received from the sire 
and Gi: 

O Aij = P f  AA( Yijl Gi) + (1 - P) f AB( Ylj] Gi) 

Then, the likelihood of the observations, given the marker infor- 
mation is: 

+ P2 ~I [(1 - r)$Ai j + rdPBijJ 1--[ [(1 -- r)qS~U + r~bAij] 
jEM,(i j~Jlfl 

x [ I  [1/2qSAU + 1/2~bB,j] + P a [ I  [(1 -- r)~bBu + rq~AU 3 
je#li Je~*i 

• H [(1 - r)~A~; + r~,,j] H [1/2~A,j + 1/2r 
j~.Ar l jeog , 

+ P4I]j OBij}  dGi 

where r is the recombination rate between the QTL and the marker 
locus. In this expression, the elements of the sum correspond to the 
genotypes MA/NA, MA/NB, MB/NA and MB/NB for sire i. Note 
that, as in Elston (1980), V z is the likelihood of the observations Yij 
obtained after integrating out the sire effects G~, and not the joint 
likelihood of Yij (observable) and G i (non-observable). 

The likelihood V 1 of the observations, ignoring the marker infor- 
mation, is simply obtained from V 2 by letting r = 1/2. It must be 
emphasized that V 1 is the likelihood of the observations under the 
hypothesis that a QTL exists and is not linked to the marker locus. 

The likelihood V o of the observations under the hypothesis of the 
absence of a QTL segregating in the population is obtained with 
flAA = #AB = #BB = ilL. 

Three test statistics were computed: 

SA = - 21n(Vo/V O, which is the classical statistic used in segregation 
analysis (Elston and Steward 1971); 

SAM = -21n(Vo/V2), which is the criteria used by McLean et al. 
(1984) and Risch (1984) when marker information is added in the 
segregation analysis; 

LS = - 21n(V~/V2), which is similar to the lod score (Morton 1955). It 
tests the absence of linkage between two loci, in this case the marker 
locus and the QTL, assuming that a QTL is segregating. Thus it 
should not be used as a test for H o. However, it was included in our 
analysis because, as with the ANOVA methods, a segregating QTL 
will not be detected by LS if it is unliked to the studied marker. 

Grand-daughter design 

Each of the t grand-sires (i = 1,...,t) had s sires (j  = 1,... ,  s) with d 
daughters per son (k = 1,..., d). The marker genotypes of the grand- 
sires, the sires and their dams were known. Jgi, JV~ and q/e were the 
subsets of grand-sire i sons depending on the marker allele received 
from i (M, N or unknown). 

Linear statistics of Weller et al. (1990). As in the case of Soller and 
Genizi (1978) for the daughter design, Weller et al. (1990) considered 
only informative sons and the model is: 

{ ~)i + �89 + ttlj + eijk if J~ ' / # i  
1 Yijk = vi _ grni + uu + eijk if j~./Ui 

where Yijk is the performance of the kth grand-daughter of thejth son 
of the grand-sire i, v i is the grand-sire i effect, rn i the within grand-sire 
marker effect and u~j the within-grand-sire, within-marker, sire ij 
effect. The residuals eUk are assumed to be normally distributed, 
w(0, ~). 

With this model, a QTL linked to the marker locus is detected 
through the significance of the rn~ effect. The corresponding test 
statistic was written as WKS. 

Maximum likelihood. Let G i and Gij be the grand-sire and sire 
polygenlc values, assumed to be normally distributed, JV(0, aG) and OBij = P f  a~ (YijlGi) + (1 -- P) f BB( Yu[GI) �9 . . . 2 
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,2 Y(0 ,  % ). As in the daughter design, the following density functions 
were defined: 

the density of YUk given the grand-daughter genotype 9 and the 
polygenic sire value Gv: 

1 F I(Yuk--#~--Gu/2~2~, 
f o ( Y ' j k l G O = ~ e x P L - - 2  \ ~ ) J 

the density of the polygenic grand-sire value G; 

f(G3 = ~ e x p  
, / 2 ~ . ~  L 2 \ ~ ) J '  

the density of the polygenic sire value G~j given the polygenic grand- 
sire value: 

1 ~ 1 [G~j- G~/2~2~ 
f(Gij [G 3 = - e x p  - - -  - - ; -  - 

�9 , 2  2 with a G = 3/4%, 

the density of YUk given the QTL allele (A or B) received by daughter 
ijk from the sire ij and Gij: 

~ Aijk  = P f AA( YUk [ Gij) + (1 - P) f AB( Y~jk I G~) 

49Bijk = P faB( Yijk ] Gij) + (1 - P) f BB( Yijk [ Gi). 

Two new density functions must be considered: 

@AiJ=fG,jf(GqlG3{P~$AiJk+(1--P)l~k((OAVk+$mjk)/2}dG~j 

r ~Bijk}dGij 

which are the likelihoods of sire ij offspring given the QTL allele (A or 
B) received by the sire ij from the grand-sire i and Gv 

The algebraic forms of the likelihoods of the observations, given 
the marker  information W2, and ignoring the marker information W 1 
or assuming the absence of QTL Wo, are similar to V2, V 1 and V 0 
replacing ~)Aij and Omj by l~)Ai j and @~ij. 

The test statistics were again written as SA, SAM and LS. 

What are the advantages of the ML methods? 

As explained in the introduction, the principle of QTL detection is the 
detection of differences in the trait distribution between offspring of 
double heterozygous parents classified on the marker  allele they 
received. Compared to the test statistics used by Soller and Genizi 
(1978) and by Weller et al. (1990), the ML techniques should make use 
of two extra sources of information: the differences between distribu- 
tions (beyond the difference between means) and the segregation of 
alleles at the QTL. 

Differences between distributions 

Tables 1 and 2 give the differences in mean and in variance between 
offspring classes defined by the allele received from the sire for 
both designs respectively, where a = ( # A A -  PBB)/2 and d = (/~AA- 
I~AB)/(#AA -- ~8~) (as defined in Mor ton  and McLean 1974). 

As previously explained by Soller and Genizi (1978) and Weller 
et al. (1990), the mean difference is zero for homozygous sires, is half in 
the grand-daughter design as compared to the daughter design, and 
decreases to zero when the recombination rate increases to 50%. It 
must also be noted that  this difference is independent of the A allele 

Table 1 Differences between offspring receiving M, rather than N, 
from their sire in the daughter design (a) 

Sire genes Mean differences Variance differences 

MA/NA 0 0 

MA/NB 2a(1 - 2r)[pd + (1 - p) 4a2(1 - 2r)p(1 - p) 
x (1 - d)] x (2d - 1) 

MB/NA - 2a(1 - 2r)[pd + (1 - p) - 4a2(1 - 2r)p(1 - p) 
x (1 - d)] x (2d - 1) 

MB/NB 0 0 

a a = ( # A A  - -  #Bn)/2 and d = ( f l A A  - -  f i A B ) / ( # A A  - -  #BB) ,  P is the allele A 
frequency, r is the recombination rate 

Table 2 Differences between offspring receiving M, rather than N, 
from their sire in the grand-daughter design (a) 

Grand- Mean Variance 
Sire genes differences differences 

MA/NA 0 0 

MA/NB a(1 - 2r) [pd + (1 - p) 
x (1 - d)] 

MB/NA 

2a2(1 - 2r)[p(1/2 + p - 2p 2) 
x d 2 + (1 - p)(1/2 - 3p 
+ 2pZ)(1 - d) 2 +�89 
x (1 - p)(1 - 2p)] 

-- a(1 -- 2r) [pd + (1 - p) - 2a 2 (1 - 2r) [p(1/2 + p 
x (I - d)] - 2p 2) x d 2 + (1 - p) 

x (1/2 - 3p + 2p 2) 
x (1 - d) 2 + lp  
x (1 - p ) ( 1  - 2p)] 

MB/NB 0 0 

a a = (]AAA --/~BB)/2 and d = (#AA --  ~AB)/(~AA --  ]ABB), P is the allele A 
frequency, r is recombination rate 

frequency, p, if the QTL is additive (d = 1/2), but varies between 0 and 

2a (a for the grand-daughter design) for a fully-dominant locus (d = 0 
or 1). 

Tables 1 and 2 show that there are differences in variances as well 
as in means between offspring classes. This result may be generalized 
to higher moments of the distributions. Figure 1 reports relevant 
values for these variance differences. For  an additive QTL, there is no 
variance difference for the daughter design and the differences of 
variance are maximum at fixation in the grand-daughter design. For  a 
dominant  QTL, these differences are very sensitive to the A-allele 
frequency, with a local maximum at P = 0.5. 

Segregation at the QTL 

Due to the segregation of alleles at the QTL, some sires (or grand- 
sires) are homozygous AA or BB. The presence of such sires decreases 
the constrasts studied by Soller and Genizi (1978) and Weller et al. 
(1990), directly affecting the power of their tests. Practically, the 
apparent differences between genotypes at the QTL are propor- 
tionally smaller when the proportion of homozygous sires in greater. 

Using ML techniques, we then do a segregation analysis which, 
like any mixture analysis, estimates the characteristics (mean, vari- 
ance, proportion) of unknown, sub-distribution components of an 
observable global distribution. For  instance, even if all the sires are 
known to be AA, estimates of #AA and #AB are still obtained from the 



68 

1.0 ~ ~ DD, dominant A allele 
~ GDD, dominant A allele 
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Fig. 1 Variance differences between offspring receiving M, rather 
than N, from a MA/NB sire. (GDD =grand-daughter  design, 
DD = daughter design) 

data. Moreover, posterior probabilities of individual (grand-sires, 
sires or daughters) genotypes are implicitely used in the parameter 
estimates, avoiding the bias in within-genotype means estimations. 

Similarly, the ML method gives an estimate of the recombination 
rate, r, when, in the linear approach, separate estimates of the effect 
and the position of QTL are impossible, the power of the tests 
decreasing when r increases. 

Simulations 

Restricted hypotheses 

Due to the huge amount  of computations needed (about 200h of 
CPU on a 3090 IBM computer for the whole study), some restictions 
were imposed to perform simulations and in the formulation of the 
likelihood function. First, as stated previously, zero polygenic vari- 
ance was assmned in the likelihoods, avoiding the quadratures in Gi 
and G u, and the heritability of the trait was set to zero in the generated 
data. Secondly, the likelihoods were expressed assuming Hardy- 
Weinberg equilibrium at the QTL and linkage equilibrium between 
the marker locus and the QTL. Thus, the proportions p 1, P2, P3 and P4 
have been replaced respectively by p2, p(1 - p), (1 - p)p and (1 - p)2, 
removing two parameters to be optimized. 

Populations studied 

The main comparisons concerned large populations of ten sires and 
500 daughters/sire for the daughter design, five grand-sires, 100 
sires/grand-sire and ten or 100 daughters/sire, or five grand-sires, 20 
sires/grand-sire and 500 daughters/sire for the grand-daughter de- 
sign. The QTL was defined by its effect (a = 0.1 or 0.3 phenotypic 
standard deviation) and its type (dominant, d = 1, or additive, 
d = 1/2). The frequency of p was fixed at 1/2. Four recombination 
rates (r) were studied, 0, 0.1, 0.2, 0.5. Extra simulations were done for 
some small populations (ten sires and ten or 20 daughters) in the 
daughter design in order to evaluate its ability to a detect a major 
QTL (a = 1 and d = 0 or 1/2) with a recombination rate of 0, 0.1 and 
0.2. 

In all cases, we considered a highly-polymorphic marker and 
assumed that the allele (M or N) received by the daughter or a son 
from its sire may be identified without ambiguity. 

Computing techniques 

The simulations were done in Fortran using appropriate NAG 
routines (G05CCF, G05DDF and G05CAF). The data were gener- 
ated following the different hypotheses described above, concerning 
both the normality of within-genotype distribution and the values of 
the parameters. As suggested by Weller et al. (1990), as linear test 
statistics for the daughter and the grand-daughter designs we used the 
F score given by the Type-3 sum of squares in SAS-GLM. Specific 
For t ran routines were written for computing the likelihoods. These 
likelihoods were maximised with a quasi-Newton algorithm from the 
NAG library (E04JBF). Three hundred replications were simulated 
under each H 0, and 100 under each H a situation described above. The 
maximisation of the likelihood under H 1 was done from four starting 
points, the best result being retained. Under  H> two starting points 
derived from the solution obtained under H 1 were compared. The 5 % 
quantiles under H 0 were obtained with the Harrel and Davis (1982) 
estimator. The estimated powers under H 1 were simply the propor- 
tions of test-statistics values greater than these quantiles in the sample 
of replicates. 

Results 

Distribution under/-/o 

Tables 3 and 4 give the main characteristics of the 
test-statistics distributions under the H 0 hypothesis. As 
expected, the SG and WKS criteria follow central Fisher 
distributions with s and 2 s ( d  - 1) degrees of freedom for 
SG, and t and t s ( d  - 1) degrees of freedom for WKS. By 
constrast, the distributions of the maximum-likelihood 

Table 3 Distributions of test statistics under H o in large populations. Daughter  design 

Method ~ Numbers of Percentage Without  0 b 
of 0 

Sires Daughters/sire 

With 0 b Quantiles + SD (with 0 b) 

Mean SD Mean SD At 5% At 1% 

SG 10 500 0 
SA 10 500 23.6 
SAM 10 500 13.0 
LS 10 500 58.7 

1.02 0.45 1.02 0.45 1.79 _+ 0.05 2.35 + 0.15 
1.90 2.05 1.45 1.97 5.66 +_ 0.57 8.91 _+ 0.99 
2.62 2.36 2.28 2.37 7.08 _+ 0.48 9.91 _+ 0.62 
1.99 1.87 0.82 1.55 4.59 _+ 0.59 6.70 _+ 0.47 

a SG = Soller and Genizi (1978) test statistic; SA = Segregation ana- 
lysis test; SAM = Segregation analysis including information from a 
marker; LS = Lod Score test of the linkage between QTL and marker 

b Means, standard deviations and quantiles estimated without or 
with the 0 values obtained for the likelihood ratio test in the simula- 
tions 
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Method a Numbers of Percentage Without  0 b With 0 b 
of 0 

Sons/grand-sire Daughters/sire Mean SD Mean SD 

Quantiles _+ SD (with 0 b) 

At 5% At 1% 

WKS 

SA 

SAM 

LS 

100 10 0 0.98 0.64 0.98 0.64 
100 100 0 0.98 0.66 0.98 0.66 

20 500 0 0.98 0.63 0.98 0.63 

100 10 7.0 2.04 2.13 1.90 2.12 
100 100 9.7 1.93 2.13 1.74 2.10 
20 500 19.7 1.85 2.15 1.48 2.06 

100 10 4.0 2.54 2.37 2.44 2.37 
100 100 13.7 2.49 2.40 2.19 2.39 
20 500 20.7 2.43 2.45 1.93 2.39 

100 10 20.7 1.89 2.15 1.50 2.06 
100 100 19.7 1.97 2.14 1.58 2.07 
20 500 33.7 1.76 5.00 1.19 4.18 

2.24 • 0.14 3.09 __+ 0.14 
2.23 __+ 0.10 3.24 • 0.23 
2.20 __+ 0.08 2.98 __ 0.14 

6.33 __+ 0.37 9.52 __+ 0.92 
6.17 __+ 0.33 8.60 +__ 0.72 
5.60 +__ 0.39 9.46 __+ 0.73 

7.20 __+ 0.47 10.70 • 0.90 
6.84 • 0.46 10.60 __+ 0.87 
7.18 __ 0.55 10.04 __+ 0.42 

5.69 + 0,57 9.67 • 1.38 
5.69 _+ 0.28 9.35 _+ 0.94 
4.94 _+ 0.77 13.54 _+ 0.40 

a WKS = Wetler et al. (1990) test statistic; SA = Segregation analysis 
test; SAM = Segregation analysis including information from a 
marker; LS = Lod score test of the linkage between QTL and marker 

b Means, standard deviations and quantiles estimated without or 
with the 0 values obtained for the likelihood ratio test in the simula- 
tions 

Table5 Power of the test 
statistics in large populations at 
the 5% level. Daughter  design 

Numbers of 

Sires Daughters/sire 

10 500 

Mean values a 

AA AB BB 

Recombination SG b SA ~ SAM a LS e 
rate 

10 500 

a In within genotype standard 
deviation 10 500 
b SG = Soller and Genizi (1978) 
test statistic 
~ SA = Segregation analysis test 
d SAM = Segregation analysis 
including information from a 10 500 
marker 
e LS = Lod score test of the 
linkage between QTL and 
marker  

--0.1 0 0.1 

- 0 .3  0 0 .3  

0 0 0.2 

0 0 0.6 

0 31 22 33 20 
0.1 22 21 25 16 
0.2 11 23 27 9 
0.5 3 24 24 2 

0 98 97 91 99 
0.1 98 99 100 97 
0.2 86 97 100 86 
0.5 4 98 94 2 

0 20 20 19 25 
0.1 19 24 24 10 
0.2 8 18 21 9 
0.5 1 14 13 2 

0 99 100 96 99 
0.1 97 97 96 99 
0.2 78 100 100 81 
0.5 4 94 94 4 

tests are not the Z 2 distributions expected for large 
samples (Wilks 1938). In particular, a number of simula- 
tions resulted in test statistics close to zero. For SA and 
SAM, this deviations from the classical asymptotic re- 
sults described by Wilks (1938) come from the break- 
down in regularity conditions generally encountered in 
mixture problems (e.g., McLachlan and Basford 1987). 
For LS, it comes from the definition of H a as the null 
hypothesis of the test when simulations were performed 
under Ho. 

Power 

The powers of the four test statistics in large populations 
for the daughter and grand-daughter designs are given 

in Tables 5 and 6. Concerning our main objective of the 
comparison between test statistics, the segregation- 
analysis method SA is often, and SAM is generally, more 
powerful than the linear statistics SG and WKS (exclud- 
ing some inversions due to our limited number of simu- 
lations). As expected, the extra power is larger when the 
recombination rate is higher. It is more often quite 
limited when the QTL and marker locus are totally 
linked, in particular for larger QTLs. The power may 
increase by more than 300% with 20% recombination 
and a small additive QTL. The lod score and linear 
statistics reach a very similar power, at least for recom- 
bination rates different from 0.5. However, the informa- 
tion given by the marker in the segregation analysis is 
limited. A maximum of 20% extra power is gained when 
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Table 6 Power of the test statistics in large populations at the 5% level. Grand-daughter design 

Numbers of Mean values a Recombination 
rate 

Grand-sires Sons/grand-sire Daughters/sire AA AB BB 

WKS b SA ~ SAM d LS e 

5 100 10 - 0.1 0 0.1 

5 100 10 - 0.3 0 0.3 

5 100 100 - 0.1 0 0.1 

5 100 100 - 0.3 0 0.3 

5 100 100 0 0 0.2 

5 100 100 0 0 0.6 

5 20 500 - 0.1 0 0.1 

5 20 500 -0.3 0 0.3 

5 20 500 0 0 0.2 

5 20 500 0 0 0.6 

0 13 9 13 5 
0,1 7 2 5 3" 
0.2 8 6 9 2 
0.5 5 8 8 1 

0 75 65 90 53 
0.1 48 51 75 39 
0.2 40 55 66 10 
0,5 5 54 52 2 

0 75 63 95 63 
0.1 61 64 85 40 
0,2 37 64 77 18 
0.5 3 72 74 4 

0 98 100 100 97 
0.1 98 100 100 95 
0,2 90 100 100 88 
0,5 2 100 100 1 

0 75 66 95 68 
0.1 61 73 91 41 
0.2 33 67 87 31 
0.5 4 66 63 2 

0 95 100 100 96 
0.1 96 100 100 96 
0.2 94 100 100 88 
0.5 5 100 100 4 

0 70 90 100 43 
0.1 52 88 98 28 
0.2 25 92 95 9 
0.5 5 94 95 0 

0 94 100 100 99 
0.1 86 100 100 68 
0.2 55 100 100 42 
0.5 5 100 100 0 

0 67 91 98 47 
0.1 47 90 95 23 
0.2 33 90 96 13 
0.5 2 93 95 0 

0 93 100 100 96 
0.1 78 100 100 71 
0.2 62 100 100 40 
0.5 6 100 100 0 

a In within genotype standard deviation 
b WKS = Weller et al. (1990) test statistic 
~ SA = Segregation analysis test 

d SAM = Segregation analysis including information from a 
marker 

~ LS = Lod score test of the linkage between QTL and marker 

the loci are to ta l ly  l inked  a n d  when  the Q T L  effect is 
small.  

O n  the o ther  hand ,  the result  with M L  tests are 
a lmos t  unaffected by  the type of Q T L  (addi t ive or  
d o m i n a n t )  a n d  the p o p u l a t i o n  s t ruc ture  (100 sires a n d  
100 g r a n d - d a u g h t e r s  or  20 sires a n d  500 g r a n d - d a u g h -  
ters). This  resul t  is pa r t i cu la r ly  e n c o u r a g i n g  since the 
m a j o r  l i m i t a t i o n  in  the g r a n d - d a u g h t e r  des ign will be 

the n u m b e r  of m a r k e r  geno type  ident i f icat ions ,  value 
t x s, r a the r  t h a n  the n u m b e r  of p h e n o t y p i c  observa-  
t ions.  N o t e  tha t  the super io r i ty  of the M L  test over  
W S K  is m o r e  i m p o r t a n t  for the last  des ign (20 sires a n d  
500 daughters /s i re)  where  differences in  wi th in-s i re  dis- 
t r i b u t i o n  are m o r e  precisely es t imated.  

F ina l ly ,  the case of a smal l  p o p u l a t i o n  wi th  a large 
Q T L  emphas izes  the preceeding  results (Table  7): the 



Table7 Power of the test 
statistics in large populations at 
the 5% level. Daughter design 

Numbers of 

Sires Daughters/sire 

10 10 

Mean values" Recombination SG b SA c SAM d LS e 
rate 

AA AB BB 

" In within genotype standard 10 10 
deviation 
b SG = Soller and Genizi (1978) 
test statistic 
c SA = Segregation analysis test 10 20 
d SAM = Segregation analysis 
including information from a 
marker 10 20 
e LS = Lod score test of the 
linkage between QTL and 
marker 

0 0 2 0 19 41 47 26 
0 0 2 0.1 10 37 43 15 
0 0 2 0.2 10 39 36 6 

0 1 2 0 15 27 28 18 
0 1 2 0.1 18 21 27 20 
0 1 2 0.2 6 19 19 7 

0 0 2 0 56 85 96 71 
0 0 2 0.1 26 85 93 47 

0 0 2 0 56 65 87 65 
0 1 2 0.1 37 56 73 39 
0 1 2 0.2 20 54 59 19 
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superiority of maximum-likelihood techniques over SG 
statistics increases with the recombination rate, reach- 
ing nearly 400% in very small populations when r = 0.2. 
The extra gain due to the marker information in segre- 
gation analyses in limited; the SG and lod score have 
very similar behaviour. 

Discussion 

Our numerical results were obtained under the follow- 
ing genetic hypotheses: a biallelic QTL, Hardy-Wein- 
berg equilibrium, and linkage equilibrium between the 
marker and the QTL. The described ANOVA methods 
are still valid under deviations to these hypotheses, for 
the marker effects are estimated within sire or grand- 
sire. In contrast, the likelihood equations should be 
modified to account for more complex genetic situ- 
ations. In general we should expect that increasing the 
number of parameters to be estimated may decrease the 
power of these likelihood-based methods, to an un- 
predictable level. However, for a multiallelic QTL the 
within-sire differences between offspring classes defined 
by the sire marker allele will be lowered, increasing the 
relative interest of likelihood methods. 

On the whole, our results, obtained on a limited set of 
parameters values, show a higher power for segregation- 
analysis methods as compared with simpler tests based 
on the marker effect on trait mean. This gain comes from 
the use of more information than with the analysis of 
variance tests: the marker effect on the whole-trait dis- 
tribution, and Mendelian segregation of the trait in 
daughters, even if the sire or the grand-sire are 
homozygous at the QTL. 

However, the power of the lod score, often used in this 
kind of study, is not higher than the power of ANOVA 
tests. This relatively-low performance is due to the 
definition of the tested hypotheses: the lod score com- 
pares H 1 (a QTL exists, which is not linked to the 
marker) and H 2 (a QTL exists, which is linked to the 
marker), while the segregation analysis compares H 2 

and H o (no QTL). The lod score should only be used in 
cases when a QTL is known, it is a position test and not a 
detection test. The case of the ANOVA methods is 
similar since the absence of marker effect may be under- 
stood either as the absence of any QTL or as the absence 
of linkage between an existing QTL and the marker. 
This ambiguity about the objective of ANOVA tests 
must be emphasized. It may be described either as a 
position or as a detection test. Only the latter case was 
considered in this study. In the former case, we could 
assume as a very general situation the segregation of 
genes at an unknown, probably large, number of QTLs. 
Thus the precise definition of the null hypothesis, includ- 
ing possible linkage between QTLs, is probably intrac- 
table. 

It must also be emphasized that the extra information 
provided by the marker may be small in segregation 
analysis, which is nearly optimal without the marker, at 
least for the population sizes and structures studied, in 
particular for larger QTLs and closer linkage. A positive 
argument for the use of genetic markers is the very good 
power of the grand-daughter design with only five 
grand-sires and 20 sons per grand-sire, since the costs of 
marker identifications may be very limited in such popu- 
lations. Moreover, detecting linkage between markers 
and the QTL gives an efficient tool for genetic improve- 
ment, in particular for the early and fast selection of 
favourable allele carriers. Finally, the future multiloci 
approaches using marker maps, will allow for the break- 
down analysis of oligogenic inheritance, which is nearly 
impossible with classical segregation analysis. One may 
also expect the costs of typing to decrease rapidly. 

The interest of ANOVA methods is their computing 
simplicity. They reach good power for strong linkage 
(this will be the usual case when dense maps are avail- 
able) and must be used as a first approach for QTL 
detection. Moreover, they may be more robust to devi- 
ation from normality, a quality which should be evalu- 
ated. Nevertheless, segregation analysis is not only a test 
but also an estimation method and gives information 
about the size and position of detected QTLs. Some 
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effort should now be directed to finding efficient, simpli- 
fied, segregation-analysis methods for detecting QTLs 
in livestock. 

Indeed, these results were obtained assuming that 
there was only one QTL segregating. The general situ- 
ation probably involves the segregation of several 
QTLs, i.e., an oligogenic (few number of QTLs), a poly- 
genic (large number of small QTLs), or a mixed (one 
large QTL + a large number of small ones) inheritance. 
Thus, the conclusions given here must be considered as a 
first indication and the test statistics actually used must 
include this extra source of genetic variation. Neverthe- 
less, due to computational difficulties, the likelihood 
must be approximated using, for instance, the proposi- 
tions of Hasstedt (1982), Demenais et al. (1990), or Le 
Roy et al. (1989). 
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